GC-MS Profiling Analysis Prepared for Jade Bloom, Inc **Date:** January 30, 2018 **Sample:** German Chamomile Type: Essential Oil Source: Matricaria recutita Batch: D16040-AA-827 ## **IDENTIFIED COMPOUNDS** | 1.1 | Column: BP5 | | | Column: WAX | | | M. I | | |------------------------------|--|------|--------|--|------|--------|--|--| | Identification | Control of the Contro | | % | Company of the Compan | | R.T. | Molecular Class | | | sovaleral | 0.67 | 674 | 0.05 | 0.07 | 771 | 0.58 | Aliphatic aldehyde | | | 2-Methylbutyral | 0.70 | 678 | 0.05 | 0.03 | 762 | 0.57 | Aliphatic aldehyde | | | Hexanal | 1.71 | 805 | 0.02 | 0.01 | 1011 | 1.35 | Aliphatic aldehyde | | | Ethyl 2-methylbutyrate | 2.24 | 845 | 0.29 | 0.29 | 990 | 1.20 | Aliphatic ester | | | Ethyl isovalerate | 2.33 | 852 | 0.03 | 0.02 | 1016 | 1.38 | Aliphatic ester | | | α-Thujene | 3.30 | 919 | 0.01 | tr | 958 | 1.05 | Monoterpene | | | α-Pinene | 3.41 | 926 | 0.03 | 0.03 | 941 | 1.00 | Monoterpene | | | Camphene | 3.70 | 943 | 0.03 | 0.03 | 996 | 1.24 | Monoterpene | | | Propyl 2-methylbutyrate | 3.75 | 946 | 0.10 | 0.10 | 1092 | 1.97 | Aliphatic ester | | | Sabinene | 4.13 | 968 | 0.04 | 0.04 | 1059 | 1.71 | Monoterpene | | | β-Pinene | 4.20 | 972 | tr | tr | 1040 | 1.56 | Monoterpene | | | Myrcene | 4.47 | 988 | 0.02 | 0.02 | 1116 | 2.24 | Monoterpene | | | 2-Pentylfuran | 4.52 | 991 | 0.07 | 0.05 | 1175 | 3.00 | Furan | | | 6-Methyl-5-hepten-2-one | 4.55 | 993 | 0.08 | 0.06 | 1278 | 4.40 | Aliphatic ketone | | | Yomogi alcohol | 4.72 | 1002 | 0.05 | 0.05 | 1361 | 5.60 | Monoterp. alcohol | | | α-Phellandrene | 4.76* | 1005 | 0.02 | 0.02 | 1108 | 2.15 | Monoterpene | | | Δ3-Carene | 4.76* | 1005 | [0.02] | tr | 1098 | 2.02 | Monoterpene | | | Octanal | 4.87 | 1011 | 0.08 | 0.09 | 1231 | 3.74 | Aliphatic aldehyde | | | α-Terpinene | 4.94 | 1014 | 0.01 | 0.01 | 1122 | 2.31 | Monoterpene | | | para-Cymene | 5.14 | 1025 | 0.10 | 0.10 | 1206 | 3.39 | Monoterpene | | | Limonene | 5.17 | 1027 | 0.04 | 0.05 | 1139 | 2.52 | Monoterpene | | | β- <mark>Phellandrene</mark> | 5.20 | 1028 | tr | 0.03 | 1146 | 2.60* | Monoterpene | | | 1,8-Cineole | 5.23 | 1030 | 0.02 | [0.03] | 1146 | 2.60* | Monoterp. ether | | | cis-β-Ocimene | 5.35 | 1037 | 0.10 | 0.31 | 1184 | 3.12* | Monoterpene | | | Butyl 2-methylbutyrate | 5.45 | 1042 | 0.02 | 0.02 | 1182 | 3.08 | Aliphatic ester | | | trans-β-Ocimene | 5.53 | 1046 | 0.55 | 0.55 | 1200 | 3.30 | Monoterpene | | | γ-Terpinene | 5.72 | 1057 | 0.22 | [0.31] | 1184 | 3.12* | Monoterpene | | | Artemisia ketone | 5.78 | 1060 | 0.49 | 0.49 | 1291 | 4.57 | Monoterp. ketone | | | Artemisia alcohol | 6.22* | 1084 | 0.17 | 0.15 | 1452 | 7.21* | Monoterp. alcohol | | | Terpinolene | 6.22* | 1084 | [0.17] | 0.01 | 1220 | 3.58 | Monoterpene | | | Linaloo <mark>l</mark> | 6.71 | 1106 | 0.04 | 0.04 | 1500 | 8.17 | Monoterp. alcohol | | | Nonanal | 6.78 | 1109 | 0.11 | 0.10 | 1336 | 5.24 | Aliphatic aldehyde | | | Pinocarvone | 8.19 | 1160 | 0.02 | 0.02 | 1486 | 7.91 | Monoterp. ketone | | | Artemisyl acetate | 8.31 | 1164 | 0.01 | 0.02 | 1371 | 5.75 | Monoterp. ester | | | Borneol | 8.66 | 1176 | 0.08 | 22.42 | 1620 | 12.20* | Monoterp. alcohol | | | Terpinen-4-ol | 8.81 | 1182 | 0.01 | 0.02 | 1529 | 9.09 | Monoterp. alcohol | | | a-Terpineol | 9.49 | 1203 | 0.04 | 0.32 | 1622 | 12.28* | Monoterp. alcohol | | | Decanal | 9.80 | 1210 | 0.04 | 0.04 | 1431 | 6.80 | Aliphatic aldehyde | | | (<i>Z</i>)-Hex-3-en-1-yl | 10.68 | 1229 | 0.01 | 0.02 | 1442 | 7.01 | Aliphatic ester | | | isovalerate | | | | 30000000000000000000000000000000000000 | | | The second secon | | | Hexyl isovalerate | 11.12 | 1239 | 0.02 | 0.01 | 1413 | 6.44 | Aliphatic ester | | | (E)-Hex-2-en-1-yl | 11.31 | 1243 | 0.02 | [0.15] | 1452 | 7.21* | Aliphatic ester | |------------------------------|---------|------|--------|---------|------|--------|--------------------------------------| | isovalerate | | | | | | | | | (E)-4,8-Dimethylnona-3,7- | 12.51 | 1269 | 0.05 | 0.03 | 1598 | 11.24 | Aliphatic ketone | | dien-2-one? | 4 4 5 5 | | | | | | | | Pelargonic acid | 14.53 | 1309 | 0.05 | 0.07 | 2112 | 38.87 | Fatty acid | | Bicycloelemene | 15.01 | 1316 | 0.01 | 0.01 | 1422 | 6.63 | Sesquiterpene | | δ-Elemene | 15.24 | 1319 | 0.06 | 0.05 | 1424 | 6.67 | Sesquiterpene | | α-Cubebene | 15.96 | 1330 | 0.01 | tr | 1408 | 6.35 | Sesquiterpene | | Piperitenone | 16.58 | 1339 | 0.02 | 0.01 | 1795 | 21.56 | Monoterp. ketone | | α-Copaene | 17.68* | 1356 | 0.05 | 0.02 | 1434 | 6.88 | Sesquiterpene | | Modheph-2-ene | 17.68* | 1356 | [0.05] | 0.02 | 1446 | 7.08 | Sesquiterpene | | α-Isocomene | 18.31 | 1365 | 0.05 | 0.04 | 1454 | 7.24 | Sesquiterpene | | β-Elemene | 18.92 | 1375 | 0.08 | 0.08 | 1519 | 8.75 | Sesquiterpene | | Benzyl isovalerate | 19.67 | 1386 | 0.07 | 1.02 | 1806 | 22.17* | Phenolic ester | | β-Caryophyllene | 20.59 | 1399 | 0.10 | 0.09 | 1514 | 8.61 | Sesquiterpene | | Capric acid | 22.00* | 1416 | 0.84 | 0.86 | 2212 | 41.60 | Fatty acid | | Aromadendrene | 22.00* | 1416 | [0.84] | 0.07 | 1523 | 8.90 | Sesquiterpene | | α-Humulene | 23.39 | 1433 | 0.02 | 0.01 | 1586 | 10.86 | Sesquiterpene | | allo-Aromadendrene | 23.66 | 1436 | 0.11 | 0.12 | 1555 | 9.88 | Sesquiterpene | | trans-β-Farnesene | 24.86 | 1450 | 20.93 | [22.42] | 1620 | 12.20* | Sesquiterpene | | γ-Muurolene | 25.34 | 1456 | 0.16 | 0.14 | 1607 | 11.59 | Sesquiterpene | | Germacrene D | 25.76 | 1461 | 2.04 | [22.42] | 1620 | 12.20* | Sesquiterpene | | 3-Selinene | 26.32 | 1467 | 0.16 | [0.32] | 1622 | 12.28* | Sesquiterpene | | Dehydrosesquicineole | 26.50* | 1470 | 0.14 | 0.06 | 1649 | 13.49 | Sesquiterp. ether | | ar-Curcumene | 26.50* | 1470 | [0.14] | 1.06 | 1690 | 15.42* | Sesquiterpene | | Bicyclogermacrene | 26.95* | 1475 | 1.35 | 1.21 | 1638 | 13.05 | Sesquiterpene | | α-Selinene | 26.95* | 1475 | [1.35] | 0.03 | 1630 | 12.64 | Sesquiterpene | | a-Muurolene | 27.83 | 1485 | 0.17 | 0.15 | 1642 | 13.23 | Sesquiterpene | | (Z,E)-α-Farnesene | 28.02 | 1488 | 0.10 | 0.38 | 1669 | | Sesquiterpene | | γ-Cadinene | 28.74 | 1496 | 0.20 | 0.17 | 1663 | 14.17 | Sesquiterpene | | β-Bisabolene | 28.87 | 1498 | 0.07 | 0.07 | 1659 | 13.99 | Sesquiterpene | | 1,9-Dihydrochamazulene | 29.19* | 1502 | 2.14 | [1.02] | 1806 | 22.17* | Azulene | | (E,E)-α-Farnesene | 29.19* | 1502 | [2.14] | [1.06] | 1690 | | Sesquiterpene | | δ-Cadinene | 29.42 | 1505 | 0.29 | [0.38] | 1669 | | Sesquiterpene | | β-Sesquiphellandrene | 30.51 | 1521 | 0.03 | 0.03 | 1693 | 15.56 | Sesquiterpene | | α-Cadinene | 30.90 | 1526 | 0.03 | 0.03 | 1698 | 15.76 | Sesquiterpene | | (E)-Nerolidol | 33.89 | 1569 | 0.05 | 0.03 | 1990 | 34.25 | Sesquiterpene
Sesquiterp. alcohol | | Spathulenol | 34.05 | 1571 | 0.03 | 5.42 | 2020 | 35.73* | Sesquiterp. alcohol | | Dendrolasin | 34.05 | | 0.38 | | 1868 | | | | | | 1573 | | 0.08 | | 26.61 | Sesquiterp, ether | | Globulol | 34.40 | 1576 | 0.17 | 0.22 | 1969 | 33.00 | Sesquiterp. alcohol | | Viridiflorol | 34.89 | 1583 | 0.06 | 0.05 | 1980 | 33.63 | Sesquiterp. alcohol | | 4,10-Dihydrochamazulene | 36.16 | 1603 | 0.34 | 0.41 | 2005 | 35.07 | Azulene | | <i>M. recutita</i> biomarker | 36.38 | 1608 | 0.04 | 0.04 | 1918 | 30.04 | Oxygenated | | | 13 | | | 12 | | | sesquiterpene | | | | OF 010/- | 02 200/ | | | | | |--------|---|---|--|--|---|--|--| | 60.78 | 2594 | 7.675.655 | 1705710 | 2607 | 49.96 | Alkane | | | 58.94 | 2494 | 0.66 | 0.76 | 2508 | 48.08 | Alkane | | | 56.99 | 2394 | 0.07 | 0.08 | 2405 | 45.98 | Alkane | | | 54.99 | 2295 | 0.27 | [38.35] | 2315 | 44.03* | Alkane | | | 52.20 | 2164 | 0.51 | 0.50 | 3137 | 59.01 | Fatty acid | | | 52.04 | 2157 | 0.29 | 0.22 | 3089 | 58.24 | Fatty acid | | | 51.16 | 2117 | 0.02 | 0.02 | 2586 | 49.57 | Diterp. alcohol | | | 48.36 | 1995 | 1.09 | 1.36 | 2855 | 54.39 | Fatty acid | | | 47.40 | 1957 | 0.13 | | | | Polyyne | | | 46.35 | 1915 | 0.57 | | | | Polyyne | | | 45.77 | 1892 | 4.46 | 4.11 | 2762 | 52.79 | Polyyne | | | 44.42 | 1843 | 0.20 | [0.81] | 2073 | 37.56* | Aliphatic ketone | | | 43.14 | 1796 | 0.14 | 0.19 | 2640 | 50.58 | Fatty acid | | | 41.81 | 1755 | 38.08 | 38.35 | 2315 | 44.03* | Sesquiterp. alcohol | | | 40.73 | 1720 | 2.90 | 2.85 | 2233 | 42.12 | Azulene | | | 39.53 | 1686 | 1.29 | 1.31 | 2135 | 39.53 | Sesquiterp. alcohol | | | 39.06 | 1674 | 4.21 | 4.25 | 2047 | 36.68 | Sesquiterp. alcohol | | | 38.76 | 1667 | 0.07 | 0.05 | 2088 | 38.07 | Sesquiterp. alcohol | | | 38.20 | 1653 | 0.57 | | | | Sesquiterp. alcohol | | | 37.99* | 1648 | [5.48] | 0.27 | 2128 | 39.32 | Sesquiterp. alcohol | | | 37.99* | 1648 | 5.48 | [5.42] | 2020 | 35.73* | Sesquiterp. alcohol | | | 37.73 | 1641 | 0.14 | 0.22 | 2000 | 34.79 | Azulene | | | 37.66 | 1640 | 0.69 | 0.81 | 2073 | 37.56* | Sesquiterp. alcohol | | | 36.61 | 1614 | 0.32 | | | | Sesquiterp. alcohol | | | | 37.66
37.73
37.99*
37.99*
38.20
38.76
39.06
39.53
40.73
41.81
43.14
44.42
45.77
46.35
47.40
48.36
51.16
52.04
52.20
54.99
56.99
58.94
60.78 | 36.61 1614 37.66 1640 37.73 1641 37.99* 1648 37.99* 1648 38.20 1653 38.76 1667 39.06 1674 39.53 1686 40.73 1720 41.81 1755 43.14 1796 44.42 1843 45.77 1892 46.35 1915 47.40 1957 48.36 1995 51.16 2117 52.04 2157 52.20 2164 54.99 2295 56.99 2394 58.94 2494 60.78 2594 | 36.61 1614 0.32 37.66 1640 0.69 37.73 1641 0.14 37.99* 1648 5.48 37.99* 1648 [5.48] 38.20 1653 0.57 38.76 1667 0.07 39.06 1674 4.21 39.53 1686 1.29 40.73 1720 2.90 41.81 1755 38.08 43.14 1796 0.14 44.42 1843 0.20 45.77 1892 4.46 46.35 1915 0.57 47.40 1957 0.13 48.36 1995 1.09 51.16 2117 0.02 52.04 2157 0.29 52.20 2164 0.51 54.99 2295 0.27 56.99 2394 0.07 58.94 2494 0.66 60.78 2594 0.03 | 36.61 1614 0.32 37.66 1640 0.69 0.81 37.73 1641 0.14 0.22 37.99* 1648 5.48 [5.42] 38.20 1653 0.57 38.76 1667 0.07 0.05 39.06 1674 4.21 4.25 39.53 1686 1.29 1.31 40.73 1720 2.90 2.85 41.81 1755 38.08 38.35 43.14 1796 0.14 0.19 44.42 1843 0.20 [0.81] 45.77 1892 4.46 4.11 46.35 1915 0.57 47.40 1957 0.13 48.36 1995 1.09 1.36 51.16 2117 0.02 0.02 52.04 2157 0.29 0.22 52.20 2164 0.51 0.50 54.99 2295 0.27 [38.35] 56.99 2394 0.07 0.08 | 36.61 1614 0.32 37.66 1640 0.69 0.81 2073 37.73 1641 0.14 0.22 2000 37.99* 1648 5.48 [5.42] 2020 37.99* 1648 [5.48] 0.27 2128 38.20 1653 0.57 38.76 1667 0.07 0.05 2088 39.06 1674 4.21 4.25 2047 39.53 1686 1.29 1.31 2135 40.73 1720 2.90 2.85 2233 41.81 1755 38.08 38.35 2315 43.14 1796 0.14 0.19 2640 44.42 1843 0.20 [0.81] 2073 45.77 1892 4.46 4.11 2762 46.35 1915 0.57 47.40 1957 0.13 48.36 1995 1.09 1.36 2855 51.16 2117 0.02 0.02 2586 52.04 215 | 36.61 1614 0.32 37.66 1640 0.69 0.81 2073 37.56* 37.73 1641 0.14 0.22 2000 34.79 37.99* 1648 5.48 [5.42] 2020 35.73* 37.99* 1648 [5.48] 0.27 2128 39.32 38.20 1653 0.57 38.76 1667 0.07 0.05 2088 38.07 39.06 1674 4.21 4.25 2047 36.68 39.53 1686 1.29 1.31 2135 39.53 40.73 1720 2.90 2.85 2233 42.12 41.81 1755 38.08 38.35 2315 44.03* 43.14 1796 0.14 0.19 2640 50.58 45.77 1892 4.46 4.11 2762 52.79 46.35 1915 0.57 47.40 1957 0.13 48.36 1995 1.09 1.36 2855 54.39 | | ^{*:} Two or more compounds are coeluting on this column [xx]: Duplicate percentage due to coelutions, not taken account in the identified total Note: no correction factor was applied # **HEALTH, HEALING & HAPPINESS** ### OTHER DATA Physical aspect: Dark blue viscous liquid Refractive index: N/A (Too dark) #### COMPLIANCE WITH ISO 19332:2008 – MATRICARIA RECUTITA | Compound | Hungary type | | Egy | pt type | Observed % | Campliana | |---------------------|--------------|--------|--------|---------|------------|-----------| | | Min. % | Max. % | Min. % | Max. % | Observed % | Complies? | | trans-β-Farnesene | 20 | 51 | 15 | 35 | 20.9 | Yes | | α-Bisabolol oxide B | 2 | 21 | 2 | 8 | 5.2 | Yes | | α-Bisabolone oxide | 1 | 4 | 2 | 6.5 | 4.2 | Egypt | | α-Bisabolol | 15 | 40 | 1 | 10 | 1.3 | Egypt | | Chamazulene | 5 | 22 | 2 | 5 | 2.9 | Egypt | | α-Bisabolol oxide A | 2 | 27 | 35 | 50 | 38.1 | Egypt | #### CONCLUSION No adulterant, contaminant or diluent were detected using this method. The oil complies with the ISO norm for an egyptian chamomile oil.